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Abstract
To address whether diabetes enhances lipid peroxidation and attenuates nitric oxide (NO) generation resulting in tissue
complications, we measured oxysterols and NO metabolites (NOx) in the tissues of diabetic Wistar rats. After 4 weeks of
streptozotocin injection (STZ, 80 mg/kg, i.p.), we measured 7a- and 7b-hydroperoxycholest-5-en-3b-ol (7a-OOH and
7b-OOH), 7a- and 7b-hydroxycholesterol (7a-OH and 7b-OH) and 7-ketocholesterol (7-keto) by HPLC in the kidneys, heart,
and liver. All the oxysterols were much higher in the diabetic than in sham rats, while the extent of the increase was higher in the
order of the kidney, heart, and liver. Together with high blood urea nitrogen, the data indicate that the kidney is the predominant
target of early diabetic complications. Plasma NOx were decreased by 20% in the STZ rats. The enhanced oxidative stress in
diabetes would increase oxysterols by peroxidation, while superoxide is known to reduce NO by reaction to form another potent
oxidant peroxynitrite.
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Introduction

In diabetes, reactive oxygen species (ROS) are produced

by NAD(P)H oxidase,[1] microsomal/mitochondrial

CYP2E1,[2] mitochondrial respiratory chain,[3] indu-

cible nitric oxide synthase,[4,5] and glycation reac-

tion.[5,6] The ROSs promote lipid peroxidation.

Endothelial NOS (eNOS) generates NO which

maintains vasodilatation and tissue circulation. NO

scavenges active radicals such as lipid and lipid peroxyl

radicals, thereby prevents lipid peroxidation (LPO).

However, reduced availability of NO due to excessive

ROS causes micro-vascular disturbance, characteristics

of diabetes. eNOS also generates ROS by uncoupling

this enzyme in diabetes and other diseases.[3,7]

Peroxynitrite (ONOO2) is formed when NO reacts

with superoxide at near equimolar ratio.[4,7–9] This

peroxynitrite uncouples eNOS to generate super-

oxide.[7] Peroxynitrite also promotes LPO, thereby

inactivates enzymes and inhibits mitochondrial

respiration via protein oxidation and nitrotyrosine

(NT) modification.[9] Additionally, a proteomics in

the heart of diabetic mouse revealed NT modification

of the mitochondrial proteins serving for energy

production, antioxidant defense, and apoptosis.[10]

Moreover, peroxynitrite damages DNA, activates

DNA repair enzymes, and triggers cell death.[9] As

such, LPOs and peroxynitrite induce diabetic com-

plications in the kidney, retina, heart, liver,

etc.[1,4,8,11–19] Therefore, LPOs and NO metab-

olites (NOx) have been widely measured in the blood or

tissues to evaluate the pathological states in dia-

betes.[1,5,9,12,14,15,17,20,21] 4-Hydroxynonenal

(HNE), malondialdehyde (MDA), F2-isoprostane,
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thiobarbituric acid reacting substances (TBARS) etc.

have been used to evaluate oxidative states in the

diabetes.[14,15,19,22]

In this study, we measured oxysterols of which

metabolism is characterized more precisely than these

LPOs. Cholesterol is peroxidized by mitochondrial/

microsomal CYP,[23] or oxidized to cholesterol

hydroperoxides 7a- and 7b-hydroperoxycholest-

5-en-3b-ol (7a-OOH and 7b-OOH) by AMVN and

AAPH. 7a- and 7b-OOHs are either reduced to 7a-

and 7b-hydroxycholesterol (7a-OH and 7b-OH) or

further oxidized to 7-ketocholesterol (7-keto). 7a-OH

is also formed by cholesterol 7a-hydroxylase, while 7-

keto is formed from 7a-OH by an NADPþ-dependent

dehydrogenase in the liver microsome.[24]

Oxysterols include variety of cholesterol derivatives

such as 7a- and 7b-OOHs, cholesterol a- and

b-epoxides, cholesterol-3b-5a-6b-triol, 7-keto,

4a- and 4b-hydroxycholesterols (OHs), 6b-OH, 7a-

and 7b-OH, 24-OH, 25-OH, 27-OH.[23] We pre-

viously found high levels of oxysterols such as 7a- and

7b-OOH, 7a- and 7b-OH, and 7-keto in various tissues

in paraquat intoxication,[25] chronic alcohol

intake,[26–28] carbon monoxide poisoning,[29] and

alcoholic liver injury,[30] etc. In the present study,

we measured the same oxysterols in the kidney, heart,

and liver as wells as blood NOx in the STZ diabetic rats.

Materials and methods

Materials

3,5-Di-tert-butyl-4-hydroxytoluene (BHT), luminol

(3-aminophthaloylhydrazine) and cytochrome c (from

horse, type IV) were purchased from Wako Pure

Chemical Company (Osaka, Japan) b-Sitosterol (as

IS), 7-keto, 7a- and 7b-OH were purchased from

Stelaroids (Wilton, NH). 5a-Hydroperoxycholest-

6-en-3b-ol (5a-OOH), 7a- and 7b-OOH, and

b-sitosterol 5a-hydroperoxide (as IS) were prepared

as described previously.[31]

Animals

Under the guidelines for animal experiments of the

Kobe University Graduate School of Medicine, male

Wistar rats (220–230 g) were fed a standard rat chow

diet and had access to water ad libitum. Diabetes was

induced by a single intraperitoneal injection of

streptozotocin (STZ, 80 mg/kg body weight) to

animals. Four weeks later, under anesthesia with

pentobarbital sodium (Abbott Lab, Abbott Park, IL,

USA), the kidneys, heart, and liver were harvested on

ice, and then kept in 10% formalin at room

temperature until assay. Plasma was frozen for assay

at 2858C for blood urea nitrogen (BUN) determined

by urease-indophenol method, aspartate aminotrans-

ferase (AST), creatine kinase (CK-MB), following

routine laboratory techniques. Insulin was determined

by radioimmunoassay (Rat insulin RIA kit, Linco

Research Incoporation, MO). Blood glucose was

measured by a glucose analyzer (GLUTEST ACE,

Sanwa Chemicals, Nagoya, Japan).

Nitrite and nitrate measurements

A 100-ml plasma sample was deproteinized by mixing

with 200-ml of methanol then being centrifuged at

5200g for 20 min at 48C. A 10-ml portion of the

supernatant was injected to an HPLC (ENO-10,

Eicom, Kyoto, Japan) with a stainless-steel column

(NO-PAC. 50 £ 4.6 mm I.D.) packed with poly-

styrene polymer using 10% methanol containing

0.15 mol/l NaCl/NH4Cl and 0.5 g/l EDTA 4Na as a

mobile phase at a flow rate of 0.33 ml/min. Then the

nitrate was reduced to nitrite through a reduction

column packed with copperized cadmium (NO-RED,

10 £ 5 mm I.D., Eicom). The elute was mixed with

Griess reagent in a reaction coil, at a flow rate of

0.1 ml/min, and the absorbance was monitored at

540 nm by use of a flow-through spectrophotometer

(NOD-10, Eicom).

Extraction

Total lipids were extracted[31] and the cholesterol

fraction was isolated by solid phase extraction using a

silica column (Sep-Pak-NH2), as previously

described.[31]

HPLC-CL analysis

Cholesterol hydroperoxides were quantified by HPLC

with post-column chemiluminescence (HPLC-CL) as

previously described.[31] A TSK gel Octyl-80Ts

column (Tosoh, Japan) and methanol/water/aceto-

nitrile (89:9:2) as the mobile phase were used.

HPLC-UVanalysis of oxysterols

7a-OH, 7b-OH, and 7-keto were determined by

HPLC with a UV detector set at 210 and 245 nm as

previously described.[27] An Inertsil ODS-2 column

(GL Sciences, 5mm, 150 £ 4.6 mm internal diam-

eter) and acetonitrile/methanol/water (46:45:9) as the

mobile phase were used.

Statistical analysis

All data are expressed as means ^ SD. Differences

between the groups were assessed by the Student’s

t-test.

Results

Table I shows characters of the rats. The STZ-treated

rat lost 12:1 ^ 2:5 g of body weight by 2 days
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post-injection. After 28 days, the STZ-rat gained

weight only by 38.0 g, as compared with 142.2 g of the

control rat. Blood glucose was 4.7 and 5.7-fold higher

in the STZ rat than the control rat after 2 days and

4 weeks, respectively. Additionally, insulin level was

6.8% of the control after 4 weeks.

Table II shows that the levels of cholesterol

hydroperoxides 7a- and 7b-OOH in the control rats.

The 7a- and 7b-OOHs were higher in the order of the

liver, kidney, and heart, and that 7b-OOH level was

more than twice higher than 7a-OOH level in each

tissue. In the diabetic rats, the extents of increases in

7a- and 7b-OOHs were higher in the order of the

kidney, heart, and liver (Table II).

Table III shows that the levels of hydroxy-

cholesterols 7a-OH and 7b-OH, 7-keto, and choles-

terol. The levels of oxysterols in the control rats were

higher in the order of the kidney, liver, and heart.

In the diabetic rats, 7a- and 7b-OHs, and 7-keto levels

were higher in these tissues than in the control rats,

but the extents of the increases were higher in the

order of the heart, kidney, and liver. The STZ-treat-

ment did not affect total level of cholesterol in three

tissues (Table III). Except for 7b in the liver, 7a- and

7b-OH levels were higher than 7a- and 7b-OOH

levels in each tissue (Tables II and III).

Figure 1 shows the percentage of cholesterol

hydroperoxide (7a- and 7b-OOHs), hydroxycholes-

terol (7a- and 7b-OHs), and 7-keto to the sum of these

oxysterols. In the kidney of the control rat, 7a- and 7b-

OHs are about half of the sum of these oxysterols. 7a-

and 7b-OOHs were increased in the STZ-rat, whereas

7a- and 7b-OHs were decreased. In the heart, 7a- and

7b-OOHs were decreased, while 7a- and 7b-OHs

were increased. In the liver, 7a- and 7b-OOHs were

decreased, whereas 7-keto was increased. Since it is

known that 7a- and 7b-OOHs are supposed to be the

most injurious to tissues among oxysterols, since the

chemical reactivity is the highest because of the

successive alignment of hetero-atoms in –OOH.

Together with the high plasma level of BUN but not

CK and AST (Table IV), the percentage of increase in

7a- and 7b-OOHs to the sum of oxysterols in the

kidney but not in the liver and heart explains why

kidney rather than the liver or heart is the target

organ in the early diabetes. These metabolites

were undetectable in the blood (data not shown).

Table II. 7-Hydroperoxycholesterol concentrations in kidney,

heart, and liver of rats from control and STZ groups.

Tissue n 7a-OOH (nmol/g) 7b-OOH (nmol/g)

Kidney

Control 6 10.6 ^ 3.6 27.2 ^ 10.5

STZ 7 51.4 ^ 12.1 127.4 ^ 28.4

X-increase £ 4.8 £ 4.7

P 0.00006 0.00002

Heart

Control 6 3.0 ^ 1.5 6.2 ^ 4.2

STZ 7 9.5 ^ 4.1 21.8 ^ 9.6

X-increase £ 3.2 £ 3.5

P 0.005 0.004

Liver

Control 5 22.6 ^ 9.0 58.4 ^ 23.9

STZ 7 41.5 ^ 8.6 92.6 ^ 18.7

X-increase £ 1.8 £ 1.6

P 0.004 0.019

Values are mean ^ SD. 7a-OOH, 7 a-hydroperoxycholest-5-en-3b-

ol and 7b-OOH, 7 b-hydroperoxycholest-5-en-3b-ol. Rats were

given 80 mg/kg i.p. STZ once.

Table III. Changes of oxysterols in kidney, heart, and liver of rats from control and STZ groups.

n 7a-OH (nmol/g) 7b-OH (nmol/g) 7-keto (nmol/g) Cholesterol (nmol/g)

Kidney

Control 6 64.5 ^ 36.9 52.3 ^ 48.8 74.0 ^ 56.7 7451 ^ 1857

STZ 7 215.7 ^ 90.9 141.6 ^ 65.6 258.7 ^ 96.3 6306 ^ 227

P 0.003 0.019 0.002 0.194

Heart

Control 5 7.7 ^ 3.3 9.3 ^ 3.5 21.8 ^ 10.3 1744 ^ 134

STZ 6 45.5 ^ 14.7 39.3 ^ 19.8 87.4 ^ 37.6 1641 ^ 123

P 0.0009 0.015 0.006 0.216

Liver

Control 6 52.2 ^ 15.0 20.8 ^ 5.6 43.6 ^ 6.9 2334 ^ 486

STZ 7 95.0 ^ 32.7 63.9 ^ 20.8 126.1 ^ 32.5 2469 ^ 304

P 0.014 0.001 0.0003 0.552

Values are mean ^ SD. 7-keto, 3b-hydroxycholest-5-en-7-one; 7b-OH, cholest-5-ene-3b, 7b-diol; and 7a-OH, cholest-5-ene-3b, 7a-diol.

Table I. Changes of body weight, blood glucose, and serum insulin

levels in rats from control and STZ-treated rats.

Change of body

weight (g)

Blood glucose

(mg/dl)
Insulin (ng/ml)

2d 4w 2d 4w 4w

Control

Mean þ13.2 þ142.2 88.6 89.2 4.4

^ SD 2.0 7.6 4.8 8.1 1.2

STZ

Mean 212.1 þ38.0 418 508 0.3

^ SD 2.5 17.8 35 75 0.1

Rats were given 80 mg/kg i.p. STZ once.
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Histological examination did not show significant

changes in the tissues of the STZ rats (data not shown).

In the plasma, NOx were decreased by 20% in

the STZ-rats, as compared with the control rats

(Table IV), in contrast with the increase in the

oxysterols.

Discussion

The major findings of this study were the prominent

increase of oxysterols (7a-OOH, 7b-OOH, 7a-OH,

7b-OH, and 7-keto) in diabetic rat tissues using

HPLC (Tables II and III), and 20% decrease in

plasma NO metabolites (NOx). The increase in the

oxysterols after STZ-treatment was the highest in

the kidney, in consistent with the increase in BUN, as

compared with the liver and heart (Table IV). These

results are in line with earlier appearance of diabetic

complications in the kidney than the heart and liver.

This is the first report on the simultaneous measure-

ments of multiple oxysterols in the three tissues and

NOx in the plasma, although it was reported that 7b-

OH and 7-keto are increased in the myocardium.[32]

Tissue lipid peroxides (oxysterols) were increased

by more than 4-folds in the diabetic rat in this study.

The oxysterols were increased much greater than

MDA, HNE, etc., as reported previously in diabetic

animals and patients.[33–36] MDA is not

increased,[33,34] or increased by 1.2-fold[35] in

similar tissues after 6–10 weeks of STZ injection.

HNE is slightly increased in the aorta after 28 weeks of

STZ treatment.[36]

Except for 7b-OH and OOH in the liver, 7a- and

7b-OHs levels were higher than 7a- and 7b-OOH in

each diabetic tissue (Tables II and III). The latter is

explained by the findings that superoxide dismutase

(SOD), and glutathione peroxidase are activated in

the tissues of diabetic animal,[35,37] which reduce

OOHs to OHs. On the other hand, basal levels of

oxysterols were higher in the liver than in the kidney

and heart (Tables II and III). The latter may be

explained by the high hepatic CYP activity, which is

involved in the metabolism of cholesterol and

detoxification in general.

The extent of increase in oxysterols was much

higher in the diabetic rat (this study) than in various

tissues after paraquat administration,[25] chronic

alcohol intake,[26–28] or CO exposure,[29] as

reported. The increase was at most 2.5-fold for 7b-

OOH in the kidneys after paraquat adminis-

tration,[25] as compared with more than 4-folds

increase of oxysterols in diabetes.

Oxysterols are physiological intermediates or pro-

ducts in metabolism and transport of cholesterol.[38]

They also enhance transcriptional activation of genes

that encode enzymes and ligands of the liver nuclear

receptors LXR-a, and -b.[38,39] The latter promotes

metabolism of cholesterol, bile acids, and sphingoli-

pids, and suppresses atherogenesis. In contrast,

oxysterols constitute oxidized LDL, which promotes

smooth muscle cell apoptosis[40] and is a constituent

of atheroma or its plaque.[22] Moreover, oxysterols

promote cell death, inflammation, immuno-suppres-

sion, cell proliferation, cytokine production, and

platelet activation.[25,38] Thus, oxysterols are useful

markers for lipid peroxidation that reflect various

pathological activities.

Table IV. Total NO metabolite level and BUN in rats from control and STZ-treated rats.

NO2
2 þ NO2

3 ðmMÞ BUN (mg/dl) CK-MB (IU/l) AST (IU/l)

Control (n ¼ 6) Mean ^ SD 9.18 ^ 0.78 23.8 ^ 1.0 597 ^ 58 89 ^ 17

STZ (n ¼ 7) Mean ^ SD 7.34 ^ 0.83 29.8 ^ 2.4 604 ^ 84 84 ^ 21

P 0.003 0.00005 NS NS

Rats were given 80 mg/kg i.p. STZ once.

Figure 1. The percentage of cholesterol hydroxide (7a- and 7b-

OOHs), hydroxycholesterol (7a- and 7b-OHs), and 7-keto to the

sum of the oxysterols.
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NOx levels in the plasma were decreased by 20% in

the STZ-rat, as compared with the control (Table IV).

Diabetic state promotes ROS production.[1–5]

Although excessive NO neutralizes and eliminates

ROS, relative shortage of NO enables ROS to

promote lipid peroxidation, while NO also enhances

peroxynitrite generation through reaction with

ROS.[7,8] Peroxynitrite inactivates various enzymes

and proteins, and also promotes lipid peroxidation,

DNA damage, and cell death.[8] Thus, our data on

mild NOx reduction in contrast with a prominent

increase in lipid peroxides suggest that this NOx

reduction is a result of the enhanced generation of

ROS in diabetic states.

In conclusion, tissue oxysterols prominently

increase in association with mild decrease in plasma

NO metabolites in the rat 1 month after STZ

injection. The kidney may be the most vulnerable to

STZ, judging from the highest oxysterol levels and

elevation in BUN.
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